Mid-Semestral Exam - Topology I

Max. Marks : 40 Time : $2\frac{1}{2}$ hours

Answer all questions. You may use theorems proved in the class after correctly stating them. Any other claim must be accompanied by a proof.

- (1) State whether the following statements are *True* or *False*. Answers without correct and complete justifications will not be awarded any marks.
 - (a) Let A be the subset of \mathbb{R}^{ω} (with the product topology) defined by

$$A = \{x = (x_n) : \sup_{n} |x_n| < \infty\}.$$

Then $Int(A) = \emptyset$.

- (b) Let X be an ordered set. If X is connected in the order topology, then X is a linear continuum.
- (c) The spaces \mathbb{Q} , $\mathbb{Q}_{>0}$ (with the subspace topology of \mathbb{R}) are homeomorphic. \mathbb{Q} , $\mathbb{Q}_{>0}$ denote the rationals and the positive rationals respectively.
- (d) If $f: \mathbb{R} \longrightarrow \mathbb{R}$ is continuous and has a local minima at every point, then f is a constant.
- (e) Let Y be the collection of all 1-dimensional subspaces of \mathbb{R}^3 with the quotient topology determined by the surjective function

$$p: \mathbb{R}^3 - 0 \longrightarrow Y$$

defined by $p(v) = \operatorname{span}(v)$. Then Y is not Hausdorff.

[4x5=20]

[6]

- (2) Let X, Y be topological spaces and $p: X \longrightarrow Y$ a quotient map. If Y is connected and $p^{-1}\{y\}$ is connected for all $y \in Y$, show that X is connected. [6]
- (3) Show that every connected open subset of \mathbb{R}^2 is path connected.
- (4) Consider the cartesian product \mathbb{R}^J where J is an indexing set. Define the uniform metric on \mathbb{R}^J and check that it is indeed a metric. Show that the box topology on \mathbb{R}^J is strictly finer than the uniform topology if J is infinite. Is \mathbb{R}^J connected in the uniform topology? [2+3+3]

1